extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×Q8) = C2×C4×Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.1(C2^2xQ8) | 192,1026 |
C6.2(C22×Q8) = C2×C12⋊2Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.2(C2^2xQ8) | 192,1027 |
C6.3(C22×Q8) = C2×C12.6Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.3(C2^2xQ8) | 192,1028 |
C6.4(C22×Q8) = C42.274D6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.4(C2^2xQ8) | 192,1029 |
C6.5(C22×Q8) = C2×Dic3.D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.5(C2^2xQ8) | 192,1040 |
C6.6(C22×Q8) = C23⋊3Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 48 | | C6.6(C2^2xQ8) | 192,1042 |
C6.7(C22×Q8) = C2×C12⋊Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.7(C2^2xQ8) | 192,1056 |
C6.8(C22×Q8) = C2×C4.Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.8(C2^2xQ8) | 192,1058 |
C6.9(C22×Q8) = C6.72+ 1+4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.9(C2^2xQ8) | 192,1059 |
C6.10(C22×Q8) = C42.88D6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.10(C2^2xQ8) | 192,1076 |
C6.11(C22×Q8) = C42.90D6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.11(C2^2xQ8) | 192,1078 |
C6.12(C22×Q8) = D4×Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.12(C2^2xQ8) | 192,1096 |
C6.13(C22×Q8) = D4⋊5Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.13(C2^2xQ8) | 192,1098 |
C6.14(C22×Q8) = D4⋊6Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.14(C2^2xQ8) | 192,1102 |
C6.15(C22×Q8) = Q8×Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.15(C2^2xQ8) | 192,1125 |
C6.16(C22×Q8) = Q8⋊6Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.16(C2^2xQ8) | 192,1128 |
C6.17(C22×Q8) = Q8⋊7Dic6 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.17(C2^2xQ8) | 192,1129 |
C6.18(C22×Q8) = C22×Dic3⋊C4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.18(C2^2xQ8) | 192,1342 |
C6.19(C22×Q8) = C2×C12.48D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 96 | | C6.19(C2^2xQ8) | 192,1343 |
C6.20(C22×Q8) = C22×C4⋊Dic3 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C6 | 192 | | C6.20(C2^2xQ8) | 192,1344 |
C6.21(C22×Q8) = C2×Dic6⋊C4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.21(C2^2xQ8) | 192,1055 |
C6.22(C22×Q8) = C2×Dic3.Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.22(C2^2xQ8) | 192,1057 |
C6.23(C22×Q8) = C2×S3×C4⋊C4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.23(C2^2xQ8) | 192,1060 |
C6.24(C22×Q8) = C2×D6⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.24(C2^2xQ8) | 192,1067 |
C6.25(C22×Q8) = C2×C4.D12 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.25(C2^2xQ8) | 192,1068 |
C6.26(C22×Q8) = C6.102+ 1+4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.26(C2^2xQ8) | 192,1070 |
C6.27(C22×Q8) = Dic6⋊10Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.27(C2^2xQ8) | 192,1126 |
C6.28(C22×Q8) = C4×S3×Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.28(C2^2xQ8) | 192,1130 |
C6.29(C22×Q8) = Q8×D12 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.29(C2^2xQ8) | 192,1134 |
C6.30(C22×Q8) = C42.232D6 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.30(C2^2xQ8) | 192,1137 |
C6.31(C22×Q8) = D12⋊10Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.31(C2^2xQ8) | 192,1138 |
C6.32(C22×Q8) = (Q8×Dic3)⋊C2 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.32(C2^2xQ8) | 192,1181 |
C6.33(C22×Q8) = C6.752- 1+4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.33(C2^2xQ8) | 192,1182 |
C6.34(C22×Q8) = S3×C22⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 48 | | C6.34(C2^2xQ8) | 192,1185 |
C6.35(C22×Q8) = Dic6⋊21D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.35(C2^2xQ8) | 192,1191 |
C6.36(C22×Q8) = C6.512+ 1+4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 48 | | C6.36(C2^2xQ8) | 192,1193 |
C6.37(C22×Q8) = C6.1182+ 1+4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.37(C2^2xQ8) | 192,1194 |
C6.38(C22×Q8) = C6.522+ 1+4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.38(C2^2xQ8) | 192,1195 |
C6.39(C22×Q8) = Dic6⋊7Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.39(C2^2xQ8) | 192,1244 |
C6.40(C22×Q8) = S3×C42.C2 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.40(C2^2xQ8) | 192,1246 |
C6.41(C22×Q8) = C42.236D6 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.41(C2^2xQ8) | 192,1247 |
C6.42(C22×Q8) = C42.148D6 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.42(C2^2xQ8) | 192,1248 |
C6.43(C22×Q8) = D12⋊7Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.43(C2^2xQ8) | 192,1249 |
C6.44(C22×Q8) = Dic6⋊8Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.44(C2^2xQ8) | 192,1280 |
C6.45(C22×Q8) = Dic6⋊9Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.45(C2^2xQ8) | 192,1281 |
C6.46(C22×Q8) = S3×C4⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.46(C2^2xQ8) | 192,1282 |
C6.47(C22×Q8) = D12⋊8Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.47(C2^2xQ8) | 192,1286 |
C6.48(C22×Q8) = C42.241D6 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.48(C2^2xQ8) | 192,1287 |
C6.49(C22×Q8) = C42.174D6 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.49(C2^2xQ8) | 192,1288 |
C6.50(C22×Q8) = D12⋊9Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.50(C2^2xQ8) | 192,1289 |
C6.51(C22×Q8) = C2×Dic3⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.51(C2^2xQ8) | 192,1369 |
C6.52(C22×Q8) = C2×Q8×Dic3 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.52(C2^2xQ8) | 192,1370 |
C6.53(C22×Q8) = C2×D6⋊3Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.53(C2^2xQ8) | 192,1372 |
C6.54(C22×Q8) = Q8×C3⋊D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.54(C2^2xQ8) | 192,1374 |
C6.55(C22×Q8) = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | C6.55(C2^2xQ8) | 192,1402 |
C6.56(C22×Q8) = Q8×C2×C12 | central extension (φ=1) | 192 | | C6.56(C2^2xQ8) | 192,1405 |
C6.57(C22×Q8) = C6×C22⋊Q8 | central extension (φ=1) | 96 | | C6.57(C2^2xQ8) | 192,1412 |
C6.58(C22×Q8) = C6×C42.C2 | central extension (φ=1) | 192 | | C6.58(C2^2xQ8) | 192,1416 |
C6.59(C22×Q8) = C6×C4⋊Q8 | central extension (φ=1) | 192 | | C6.59(C2^2xQ8) | 192,1420 |
C6.60(C22×Q8) = C3×C23.37C23 | central extension (φ=1) | 96 | | C6.60(C2^2xQ8) | 192,1422 |
C6.61(C22×Q8) = C3×C23⋊2Q8 | central extension (φ=1) | 48 | | C6.61(C2^2xQ8) | 192,1432 |
C6.62(C22×Q8) = C3×C23.41C23 | central extension (φ=1) | 96 | | C6.62(C2^2xQ8) | 192,1433 |
C6.63(C22×Q8) = C3×D4×Q8 | central extension (φ=1) | 96 | | C6.63(C2^2xQ8) | 192,1438 |
C6.64(C22×Q8) = C3×D4⋊3Q8 | central extension (φ=1) | 96 | | C6.64(C2^2xQ8) | 192,1443 |
C6.65(C22×Q8) = C3×Q8⋊3Q8 | central extension (φ=1) | 192 | | C6.65(C2^2xQ8) | 192,1446 |
C6.66(C22×Q8) = C3×Q82 | central extension (φ=1) | 192 | | C6.66(C2^2xQ8) | 192,1447 |